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Abstract
Using a gradient expansion of the local microscopic particle current, in the long-time and
large-scale limit, we derive an exact analytical expression for the density and temperature
dependence of the diffusivity in terms of the density dependence of correlation functions on a
rectangular lattice. The latter are calculated by transfer matrix methods, generalized to an
adsorbate with lateral interactions and subjected to an external field. This allows an examination
of the effects of generalized hopping kinetics. Where both initial and final state interactions are
involved, the Reed–Ehrlich factorization, commonly assumed, cannot apply.

Dedicated to Professor Klaus Heinz on the occasion of his 65th birthday.

1. Introduction

Theoretical approaches to the study of diffusion in low-
dimensional systems are based on analytic methods, such
as the master, Fokker–Planck or Kramers equations, or
numerical methods, such as Monte Carlo and molecular
dynamics simulations. The former provide physical insight,
though usually at the cost of some simplifying assumptions;
simulation methods have the advantage of producing realistic,
though numerical, results for particular physical systems.
Reviews exist, together covering all of these approaches [1–6].

Although the study of collective and tracer diffusion on
the basis of the lattice gas model began decades ago [2, 7], the
model still provides the best route for examining the effects
of multiple binding sites within cells, particle interactions and
hops of different lengths on the diffusivity. The standard
description of the evolution of the local lattice occupancy is
via the master equation with the hopping of particles between
lattice sites treated as a Markovian process, i.e. the residence
time at sites is long compared to the time of individual hops.
In recent formulations a Mori-type equation for the evolution
has been constructed so as to treat memory effects in the
diffusion process [8–12]. But the associated mathematical
intractability has meant that, in practice, the Markovian
assumption is employed in these works also. Adsorbate

interactions lead to a strong dependence of the diffusivity on
the coverage, θ , of the ad-species via the kinetics assumed for
the hopping process. The kinetics are usually simplified to
the specification of transition probabilities with a hopping rate,
usually of an Arrhenius form, but modified by interactions with
neighbouring particles. A common assumption is to consider
only the initial neighbouring configuration of the hopping
particle. However, the hopping kinetics can be influenced
by initial and final state configurations, for instance to mimic
saddle-point interactions. This already leads to vastly different
diffusion behaviour in 1D [1, 13] and so should be considered
in 2D as well.

Another common a priori assumption, originally sug-
gested by Reed and Ehrlich [14], is to express the diffusion
coefficient as a product of thermodynamic and kinetic (or ‘dy-
namic’) factors:

D(θ, T ) = χ−1〈W 〉 (1)

where χ is the lattice gas susceptibility and 〈W 〉 is the
average transition rate (defined in section 2); the standard
jump rate is 〈W 〉/θ . Reed and Ehrlich argued on the basis
of non-equilibrium thermodynamics: the diffusion current
in the linear regime is given by jdiff = L∇(βμ) =
L[∂(βμ)/∂n]∇n. (Here n and μ are the local particle
density and chemical potential, β = 1/kBT .) Identifying
the Onsager coefficient L with the average hopping rate then
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gives (1), by construction. But there is no a priori reason
that this identification extends to the interacting lattice gas,
as they assumed; it is also independent of any choice of the
microscopic hopping kinetics. Justifications of (1) based on
non-equilibrium statistical mechanics followed: Zhdanov [15]
made an ad hoc assumption to define a local chemical potential
as a ratio of correlators. Others [5, 8–12] have essentially
extended Kawasaki’s use of linear response theory [16], in
which the density fluctuations are expressed in terms of the
local chemical potential as the driving force, with the latter
variable eliminated subsequently by a Taylor expansion of
μ = μ(n), i.e. by introducing the susceptibility. In the absence
of memory effects this procedure guarantees (1) and, thus,
is not a general proof. (Computer simulations have shown
memory effects are not crucial to the accuracy of results [17].)
Moreover, works employing linear response theory have been
limited to initial state kinetics [8, 9, 12, 18, 19]. No analytic
formulation has established the Reed–Ehrlich factorization (1)
beyond initial state interaction kinetics. We will indeed
show that it is invalid for all cases of generalized hopping
kinetics where both initial and final state interactions occur,
for example, for the physically relevant case of saddle-point
interactions.

For diffusion in a 1D system we have recently presented
an alternate method of calculating the collective diffusivity,
D(θ, T ) [20]. It involves a straightforward gradient expansion
of all the correlators appearing in the diffusion current in the
continuum limit and is applicable for all choices of hopping
kinetics and lateral interactions. Formally, the method is
equivalent to obtaining the diffusion equation by a Kramers–
Moyal expansion [21] of the lattice gas probability distribution
which evolves according to the master equation. However, our
approach is more direct and transparent. We proved that the
Reed–Ehrlich factorization is exact in 1D for all choices of
the hopping kinetics and for all particle interactions, i.e. both
pairwise and nonlinear interactions. Importantly, the gradient
method bypassed calculational difficulties in linear response
theory associated with a general choice of the kinetics.

Here we generalize this gradient method to 2D systems
and present the formalism which permits the evaluation of
the diffusivity for all kinetics and lateral interactions on
a homogeneous substrate [22]. To evaluate the general
expression we extend the transfer matrix method, for the
calculation of correlators, to adsorbates subject to an external
field, namely a density gradient. We give some results
for realistic scenarios of the hopping kinetics and for first
neighbour interactions for an adsorbate on a rectangular lattice,
though the method is not restricted to these interactions or
substrate symmetry. The factorization (1) is only correct for
initial state or final state interaction kinetics; it fails otherwise,
in particular for the physically important case of saddle-point
interactions.

2. Kinetic lattice gas model

To set up the kinetic lattice gas model, one assumes that
the surface of a solid can be divided into Ns cells labelled
i , for which one introduces microscopic occupation numbers

ni = 1 or 0, depending on whether cell i is occupied by
an adsorbed particle or not. There are 2Ns microstates n =
(n1, n2, . . . , nNs ) given by sequences of zeroes and ones. To
introduce the dynamics of the system one writes down a model
Hamiltonian:

H (n) = Es

∑

i

ni + V1

∑

i,a

ni ni+a + · · · . (2)

Arguing that the lattice gas Hamiltonian should give the
same Helmholtz free energy as a microscopic Hamiltonian
(for noninteracting particles) one can show that the proper
identification of Es is the free energy per particle [23]:

Es = −V0 − kBT ln(q3qint) (3)

with V0 the depth of the surface potential. The centre-of-
mass vibrations of the adsorbed molecule in this potential well
are represented by the partition functions q3 = qzqxy, with
normal (z) and in-plane (x, y) components: qint = qvibqrot

is the partition function for the internal degrees of freedom
(vibrations, νv and hindered rotations, νr). These modes
are usually described by 1D harmonic oscillators. V1 is
an (isotropic) interaction between nearest-neighbour particles,
indexed by sites i + a; longer-range and nonlinear interactions
can be included.

We introduce a function P(n, t) which gives the
probability that a given microstate n of the lattice gas is
realized at time t and define the transition probability W (n, n′)
per unit time as the probability to go from a state n′ to n.
Treating hopping as a Markov process P(n, t) must satisfy a
master equation

dP(n, t)

dt
=

∑

n′
[W (n, n′)P(n′, t) − W (n′, n)P(n, t)]. (4)

To ensure the approach to equilibrium in an isolated system
each term in the sum must satisfy detailed balance:

W (n, n′)Peq(n′) = W (n′, n)Peq(n) (5)

where

Peq(n) = e−(H (n)−μN(n))/kBT

�
(6)

� =
∑

n

e−(H (n)−μN(n))/kBT (7)

is the equilibrium probability and � is the grand canonical
partition function. In principle, W (n′, n) must be calculated
from a Hamiltonian that includes, in addition to (2), coupling
terms to the gas phase and the solid phase that mediate mass
and energy exchange. In this paper we will rather follow the
procedure initiated by Glauber [24] in setting up the kinetic
Ising model and guess the appropriate form of W (n′, n).

In the absence of adsorption and desorption the number of
adparticles, N(n), is fixed and the form of W (n′, n) simplifies.
We restrict our description of diffusion to be that resulting
from the hopping of single particles from an occupied site
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to a neighbouring unoccupied site. Then we can write this
transition probability as [25]

Wdiff(n′, n) =
∑

i,a

[W>
i (n) + W<

i+a(n)]

× δ
1−ni

n′
i

δ
1−ni+a

n
′
i+a

∏

l �=i,i+a

δ
nl

n′
l
. (8)

To allow for anisotropy of particle interaction, we label the
sites of the lattice gas by a two-component vector i = (ia, ib)

along the primitive axes a and b of a rectangular substrate.
Here W>

i (n) is the transition rate from site i to site i + a and is
given by

W>
i (n) = J0ni (1 − ni+a)[1 + A1ni−a + A′

1(ni+b + ni−b)

+ A2ni−a(ni+b + ni−b) + A′
2ni−bni+b + A3ni−ani−bni+b

+ B1ni+2a + B ′
1(ni+a+b + ni+a−b)

+ B2ni+2a(ni+a+b + ni+a−b) + B ′
2ni+a−bni+a+b

+ B3ni+2ani+a−bni+a+b] + · · · . (9)

The rate W<
i+a(n) gives the reverse current and follows

from (9) with the interchanges i � i + a, i − a � i +
2a. The form of (9) expresses the effect on the rate due to
interactions of the hopping particle with m nearest neighbours,
either in its initial state, with coefficients Am , or its final
state, with coefficients Bm . In addition, another 29 coefficients
are necessary to specify, completely, both initial and final
state interaction effects for the hopping particle; saddle-point
interactions are subsumed in such forms. Detailed balance
imposes constraints on less than half of the coefficients.
As examples, we have for the coefficients exhibited the
relations

(1 + A1)ua = (1 + B1)

(1 + A′
1)ub = (1 + B ′

1)

(1 + A1 + A′
1 + A2)uaub = (1 + B1 + B ′

1 + B2)

(1 + 2A′
1 + A′

2)u
2
b = (1 + 2B ′

1 + B ′
2)

(1 + A1 + 2A′
1 + A2 + A′

2 + A3)uau2
b

= (1 + B1 + 2B ′
1 + B2 + B ′

2 + B3)

(10)

with ua = exp(−βV1a), V1a the interaction along axis
a. Judicious choices of these coefficients allow us
to describe different hopping scenarios that we will
discuss below; various choices have been made in the
literature [1, 25].

3. Equation of motion and Fick’s law

We treat the diffusion as the result of particles hopping along
an imposed density gradient, from an occupied site i to a
neighbouring unoccupied site i + a. Taking the first moment
of the master equation, i.e. multiplying (4) by ni and summing
over all microstates n, we obtain the equation of motion for
the average occupancy of a site. To write this efficiently we
introduce the microscopic particle current through the bond
i → i + a:

ji = a[W>
i (n) − W<

i+a(n)] (11)

and evaluate its average

〈 ji〉 = a
∑

n

[〈W>
i (n)〉 − 〈W<

i+a(n)〉]

= a J0

[
〈−−−→•i◦i+1〉 − 〈←−−−◦i•i+1〉 + A1(〈•i−1 •i ◦i+1〉

− 〈◦i •i+1 •i+2〉) + 2A′
1

(〈 •
•i ◦i+1

〉
−

〈 •
◦i •i+1

〉)

+ 2A2

(〈 •
• •i ◦

〉
−

〈 •
◦i •i+1 •i+2

〉)

+ · · · + B1(〈•i ◦i+1 •i+2〉 − 〈•i−1 ◦i •i+1〉) + · · ·
]
. (12)

Here we have represented, diagrammatically, only a few of
the terms that result from (8) and (9). The arrows indicate
the directions of the hops for the forward and reverse currents.
Averages are defined by, as examples:

〈•i〉 = 〈ni 〉(t) =
∑

n

ni P(n, t) (13)

〈•i◦i+1〉 = 〈ni (1−ni+1)〉(t) =
∑

n

ni (1−ni+1)P(n, t). (14)

This current then enters the time evolution of the average site
occupancy:

d〈ni 〉
dt

= 1

a
[〈 ji−a〉 − 〈 ji〉]. (15)

The diffusion equation emerges from the average current
in the long-time and long-wavelength limit for which we can
introduce a local density or coverage, θ(r, t) = 〈ni 〉(t), and
a local current, j (r, t) = 〈 ji〉(t), r = (x, y) = iaa + ibb.
The current contains a number of differences of correlation
functions with continuous space and time dependence and we
get from (9) and (12) the form

j (r, t) = a J0{θ(r, t) − θ(r + a, t)

+ A1[F2a(r − a, t) − F2a(r + a, t)

− (F3a(r, t) − F3a(r + a, t))]
+ 2A′

1[F2b(r, t) − F2b(r + a, t)

− (F>
3 (r) − F<

3 (r + a))] + · · ·}. (16)

Here, again, we introduce just some of the correlators
appearing in the complete expression, which will be given
below for the diffusion coefficient itself, e.g.

F2a(r, t) = 〈ni ni+a〉(t)
F3a(r, t) = 〈ni−ani ni+a〉(t)
F>

3 (r, t) = 〈ni ni+ani+b〉(t)
F<

3 (r, t) = 〈ni−ani ni+b〉(t)

(17)

i.e. F2a and F3a are neighbouring pair and linear trio
correlators, respectively, along a; F>

3 (r, t) is a right-directed
triangular trio correlator and F<

3 is its left-directed counterpart,
obtained by reflection about site i, i.e. ni+a → ni−a .

For densities varying slowly on the length scale of the
lattice constant, i.e. in the continuum limit, we expand the
current keeping terms linear in the spatial gradient:

j (r, t) ≈ −a2 J0{∂a[θ(r, t) + A1(2F2a(r, t) − F3a(r, t))

+ 2A′
1(F2b(r, t) − F<

3 (r, t))] + · · ·
− a−1[2A′

1(F<
3 (r, t) − F>

3 (r, t)) + · · ·]}. (18)

3
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Two classes of terms are represented here: the first
involves the gradient of the correlation functions directly, while
the second, with four terms in all, involves the difference
of left- and right-directed functions at the same position.
(Besides F>

3 (r, t), the additional right-directed functions that
occur are F>

3h(r, t) = 〈(1 − ni )ni+ani+b〉, F>
4 (r, t) =

〈ni ni+ani−bni+b〉, F>
4h(r, t) = 〈(1 − ni )ni+ani−bni+b〉.) Now

for long time and length scales a system is maintained in local
equilibrium by much faster relaxation processes. In particular,
this implies that the space and time dependence of correlation
functions is completely given by that of the local density,
i.e. we must have

∂a Fα(r, t) = d

dθ
Fα(θ(r, t))∂aθ (19)

and from the first class of terms we obtain directly the form of
Fick’s first law for the diffusion current:

j (r, t) = −D(θ)∂aθ. (20)

The second class can be written formally in this manner also,
because the spatial variation of the density is implicit in such
differences; in 1D one can show this straightforwardly [20]. If
we define

lim
a→0

a−1(F<
α (r, t) − F>

α (r, t)) = Dα(θ)∂aθ (21)

then we obtain the complete density-dependent diffusion
coefficient, exactly, as

D(θ)/D0 = 1 + d

dθ
[〈W̃A〉 − 〈W̃B 〉 + A1〈••〉]

− 2(A′
1 + A2)D3 − (A′

2 + A3)D4

− 2B ′
1 D3h − B ′

2 D4h (22)

in terms of the equilibrium correlators at the local density,
θ(r, t). Here D0 = a2 J0 is the diffusion coefficient in the
absence of lateral interactions. Here we have written, for
example, F2a(θ) = 〈••〉 and defined the dimensionless, partial
(average) transition rate:

〈W̃A〉 = A1〈• • ◦〉 + 2A′
1

〈 •
• ◦

〉
+ 2A2

〈 •
• • ◦

〉

+ A′
2

〈 •
• ◦
•

〉
+ A3

〈 •
• • ◦

•

〉
(23)

with a similar expression for 〈W̃B 〉, after exchanging the right-
hand particle–hole pair and the coefficients here. Standard
relations have been used to simplify, e.g. the term F2a(θ) −
F3a(θ) becomes 〈••〉 − 〈• • •〉 = 〈• • ◦〉, etc. In this notation,
two of the four directed-difference functions to be evaluated
via (21) can be symbolically represented as

F<
3 (r, t) − F>

3 (r, t) =
〈 •
• •r

〉
−

〈 •
•r •

〉
(24)

F<
3h(r, t) − F>

3h(r, t) =
〈 •
• ◦

〉
−

〈 •
◦ •

〉
. (25)

Note that these latter correlators are not equilibrium quantities
but reflect the spatial gradient explicitly. Finally, the total
average transition rate, corresponding to (9), is

〈W 〉 = Jo〈W̃ 〉
= Jo[〈•◦〉 + 〈W̃A〉 + 〈W̃B〉]. (26)

Equations (22) and (26) are the general expressions for the
diffusivity and the transition rate (jump rate 〈W 〉/θ ) for
single-site hops on a rectangular lattice and clearly reflect the
interaction neighbourhoods for the hopping process, as well as
any anisotropy, via the specific orientations of the correlators.

4. Correlators in an inhomogeneous adsorbate

The correlators in local equilibrium in an inhomogeneous
adsorbate due to conditions of diffusion must involve spatial
derivatives as defined in (21). Thus the task remaining is
the evaluation of the coverage dependence of the functions
in expressions such as (23)–(25). Because derivatives are
involved, quasi-analytic rather than simulation methods are
necessary.

4.1. Diffusion in a quasi-1D adsorbate

Before presenting the method for the calculation of the
diffusivity for the general case we note that an analytic
expression is only possible in special cases. For a quasi-1D
system with the interaction parallel to the particle gradient
treated as negligible, βV1a ≈ 0, the correlators factorize with
one-site overlap, e.g. 〈• • ◦〉 = 〈••〉〈•◦〉/〈•〉. The functions
Dα also simplify, e.g. F<

3 − F>
3 → (〈•i−1〉 − 〈•i+1〉)〈••〉⊥i ,

where 〈 〉⊥ denotes a correlator in the direction perpendicular
to the gradient (the b axis). Then (22) reduces to

D(θ)/D0 = 1+ d

dθ
[W̃ ′

A(1−θ)− W̃ ′
Bθ ]+2(W̃ ′

A + W̃ ′
B) (27)

with W̃ ′
A = 2A′

1〈••〉⊥ + A′
2〈• • •〉⊥, W̃ ′

B = 2B ′
1〈◦•〉⊥ +

B ′
2〈• ◦ •〉⊥. Amongst the various choices of hopping

kinetics, three cases have simple forms and a simple physical
interpretation, namely (i) initial state interactions (B ′

n =
0; A′

1 = u−1
b − 1, A′

n = (A′
1)

n), (ii) final state interactions
(A′

n = 0; B ′
1 = ub − 1, B ′

n = (B ′
1)

n) and (iii) symmetric
initial and final state interactions (A′

n = −B ′
n), i.e. where the

initial, or final, or both neighbourhoods of the hopping particle
are relevant, respectively. Using the standard expressions
for βμ and 〈••〉 it is easy to show that the Reed–Ehrlich
form (1) applies for cases ((i) and (ii)) but not for case (iii).
In contrast, for a true-1D system, with particle interactions
along the population gradient, equation (1) is also correct for
case (iii) [20].

The other situation to which the one-site overlap
factorization applies is the quasi-chemical approximation
(QCA) in which the nearest-neighbour correlator is also given
by the 1D expression. The utility of this approximation rests
on the simplified expressions for the diffusivity that result.
It has been used in many works, beginning with Reed and
Ehrlich [14] and continuing up to the near-present [26]. It
is known to produce a diffusivity that is qualitatively correct

4
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above the ordering temperature of the system, at least for
initial state interactions. For isotropic interactions only, for
simplicity, and with the ratios RA = 〈••〉/〈•〉, RB = 〈•◦〉/〈◦〉,
(22) becomes

D(θ)/D0 = 1 + d

dθ
[〈W̃A〉 − 〈W̃B 〉]

+ [A1 + 2(A1 + A2)RA + (A2 + A3)R2
A]d〈••〉

dθ

− [2B1 RB + B2 R2
B ]d〈◦◦〉

dθ
(28)

where 〈W̃X 〉 = 〈•◦〉[3X1 RX + 3X2 R2
X + X3 R3

X ], X = A, B .
With appropriate expressions for exp(βμ) one can again show,
rigorously, that the form (1) applies for cases ((i) and (ii))
but not for case (iii). For case (i), for example, one has
〈W̃ 〉 = 〈•◦〉(1 + A1 RA)3, χ = θ(1 − θ)α, with α2 =
1 − 4θ(1 − θ)(1 − u); an analogous expression occurs for
case (ii).

4.2. Transfer matrix method for an inhomogeneous
rectangular lattice

To evaluate (23) (and the corresponding terms in 〈W̃B 〉) we
use the transfer matrix method, see Kreuzer and Payne [23]
and references therein. Its application to the calculation of
anisotropic correlators spanning three rows of the rectangular
lattice, such as those appearing in (23), is straightforward: the
lattice is taken to be an infinite cylinder of axial circumference
N sites (along the direction of b), i.e. with periodic
boundary conditions in the finite dimension. With the basis
taken as the states of a strip of length N sites and width
2 rows (rings on the cylinder) one constructs the matrix
of Boltzmann factors, in the grand canonical representation
with the (rescaled) chemical potential μ̃ = (μ − Es)

fixed, with particle interactions within a strip and between
neighbouring strips—a 4-row transfer matrix. The left and
right eigenvectors of the leading eigenvalue of this matrix
determine the coverage θ(μ, T ); the correlators follow by
contraction of appropriate derivatives of the matrix with these
vectors. In practice, the inversion to μ(θ, T ) is performed
numerically and the coverage dependence of the correlators
follows. Their derivatives can be obtained accurately, e.g. by
spline methods on a fine coverage mesh.

To calculate Dα using (21) we introduce a constant
external field which maintains a population gradient and then
evaluate the factors ∂θ/∂x and F<

α − F>
α as finite differences,

about some position, of averages on a lattice of dimension Ma
sites. As M increases the ratio of these factors will tend to Dα .
Specifically, for the application of the transfer matrix method,
we replace the infinite cylinder by a torus of size M × N
with periodicity in the planar circumference, M , in addition.
The single-particle energy, Es, of the homogeneous system
now depends on position through the external potential, φ, as
Es + iφ, for site i along the direction of a. We choose as the
basis for the position-dependent transfer matrix the 2N states
of a single ring and denote the matrix connecting rings i and
i + 1 by Ti,i+1. Then the average site occupation at the central
ring, indexed l = (M − 1)/2, M odd, is given by

〈nl〉 = 1

N�
Tr(T1,2T2,3 · · · Tl,l−1PTl,l+1 · · · TM,1). (29)

Here P is a particle matrix, with elements Prs = psδrs, ps

the number of particles in state s and � is the grand partition
function of the adsorbate, now on the torus:

�(T, μ, M, N) = Tr

( M∏

i=1

Ti,i+1

)
. (30)

The coverage gradient at site l follows by expanding 〈nl±1〉
about the zero-field values:

θ(x = (l ± 1)a) = 〈nl±1〉 − φQ(1)

l±1 + O(φ2) (31)

and evaluating the limiting three-point difference of the
coefficients of the field:

∂θ

∂x
= − φ

2a
lim

M→∞
(Q(1)

l+1 − Q(1)

l−1) + O(φ3). (32)

The form (32) is obtained by expanding each matrix in (29)
in φ and retaining products linear in φ overall. For this we
set Ti,i+1 = To − φUi/2, where To is the 2-row (ring)
transfer matrix for the homogeneous system on the torus, with
grand partition function �o, and Ui is a matrix recording
the magnitude of the external potential at the ring labelled i .
Its matrix elements between states r and s, at rings i, i + 1
respectively, are proportional to those of To,which we denote
as trs:

(Ui)rs = u(i)
rs trs (33)

u(i)
rs = i pr + (i + 1)ps, i = 1, 2, . . . , (M − 1)

= Mpr + ps i = M. (34)

Finally, the difference of field coefficients can be expressed in
terms of sums of products of matrices. We find

Q(1)

l+1 − Q(1)

l−1 = 1

2N�o
Tr(S1 + X1 + E1) (35)

with the definitions

S1 =
l−3∑

k=0

Tk
o(Uk+1D1,l−3−k To + ToD1,l−3−k UM−k−1)Tk+1

o

(36)
D1,m = Tm

o D1,0Tm
o (37)

D1,0 = T2
oP − PT2

o (38)

X1 = Tl−2
o X1,lTl−2 (39)

X1,l = Ul−1ToP − PUl−1To + ToUl P − PToUl (40)

E1 = D1,l−2UM . (41)

The matrices D1,0 and X1,l are the kernels of the population
difference, effectively, across the three rings indexed l −
1, l, l + 1; the matrix X1 encodes crossover terms about l ± 1
which are not in the regular sum S1; the matrix E1 contains the
end effect of the boundary condition (a difference in site energy
of (N −1)φ between sites 1 and N) and becomes irrelevant for
large enough M . The matrix elements of the kernels are

(D1,0)i j =
∑

k

(p j − pi)tik tk j (42)

(X1l)i j = [l(p j + pi) + (p j − pi)](D1,0)i j

+ 2l(p j − pi)
∑

k

pktik tk j . (43)
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The factors F<
α −F>

α can be evaluated in a similar manner:
differences of pairs of correlators occur, e.g. (24) and (25),
which also span the same three rings; each correlator has
the form of (29) with, however, a position- and direction-
dependent correlator matrix, C<

l,l+1 or C>
l,l+1, in place of

PTl,l+1. Again we expand such matrices about their zero-
field values and find the difference of their directed averages,
i.e. C>

l,l+1 = C>
o − φW>

l,l+1/2, where C>
o is the appropriate

matrix for the homogeneous system. For example, for the
difference (24) about the central site, we get

F<
3 − F>

3 = 〈W(3)<

l−1,l 〉 − 〈W(3)>

l,l+1〉
= − φ

2Nc�o
Tr(S2 + X2 + E2) (44)

where the expressions for S2, X2, E2 are the same as S1, X1, E1

above except for the replacements of the kernels D1,0 and X1,l

by D2,0 and X2,l ; Nc is the count of the correlator on the torus.
If the matrix elements of C>

o are denoted c>
i j ti j then the kernels

have elements

(D2,0)i j = (ToC>
o − C<

o To)i j

=
∑

k

(c>
jk − c<

ik)tik tk j (45)

(X2,l)i j = (Ul−1C>
o − C<

o Ul + ToW>
l,l+1 − W<

l−1,l To)i j

= [l(p j + pi) + (p j − pi)](D2,0)i j

+ 2l
∑

k

pk(c
>
jk − c<

ik)tik tk j . (46)

Here c>
jk − c<

ik is a difference of directed bond counts for states
indexed i, j, k in rings l − 1, l, l + 1, respectively.

The end result is that all the differences F<
α − F>

α

have the same form, proportional to Q(α)
l+1 − Q(α)

l−1, (α =
3, 3h, 4, 4h) with only the kernels Dn(α),0 and Xn(α),l modified
according to the bond counts of the homogeneous correlators.
Thus there is a well-defined and repetitive procedure for
evaluating the functions Dα , proportional to the limiting
value of the ratios (Q(α)

l+1 − Q(α)

l−1)/(Q(1)

l+1 − Q(1)

l−1), in terms
of bilinear combinations of elements of the transfer and
correlator matrices of the homogeneous system. In practice,
for fixed N , a torus of size M ∼ 102 suffices to recover
individual correlators to the precision of these calculated on
the ∞ × N lattice; finite-size effects (in M) only occur
close to special values of coverage with extreme interactions,
e.g. at critical coverages. Ultimately, as for the homogeneous
system, the accuracy of the results is only limited by the
value of N , as the dimension of the matrix To grows with N .
Unlike the homogeneous case where, for example, θ and all
correlators can be calculated by employing a reduced matrix—
the symmetric subblock of To—and further reducing the state
space by exploiting the dihedral symmetry of the cylinder, one
must use To itself in order to reproduce the partition function
of the inhomogeneous system (30).

5. Results

It is perhaps not surprising that the diffusivity for the most
general case of an interacting adsorbate on a rectangular lattice,
obtained by evaluating (22) with the transfer matrix method as
just described, follows the same rule as the quasi-1D results.

We find for the scenarios of initial state or final state interaction
kinetics (cases ((i) and (ii))) that D(θ, T ) is numerically equal
to χ−1

N 〈WN 〉 for finite values of the axial circumference, N ,
of the torus, to desired precision (M large enough) and for
any values of the interactions V1a, V1b. Here 〈WN 〉 denotes
the set of properly oriented correlators in (26) for some N .
This orientation is important even for isotropic interactions
because, for N finite, the perpendicular (〈 〉⊥) and parallel
(〈 〉‖) versions of any correlator differ, though this difference
diminishes rapidly as N increases. Because the product form
is reproduced for any N = 2, 4, 6, . . . (N must be even for
V1b repulsive) it must be true for the infinite lattice as well. An
analytic proof of the equality is harder to come by. We suspect
that a transformation of the terms in (35) to a representation in
which To is diagonal, with appropriate limits taken, is behind
our result. For a 1D lattice we have used this transformation to
obtain, for example, the analytic form of ∂〈••〉/∂θ from a ratio
of finite differences similar to (35). However, the proof is not
trivial even in this simplest case. High- and low-temperature
series expansions of D, χ and 〈W 〉 in powers of the coverage
offer an alternate route to an analytic proof.

We note that, while the Reed–Ehrlich form for case (i) is
obtained within linear response theory and has been repeatedly
applied to model diffusion in interacting systems, as outlined
in section 1, little or no attention has been paid to case (ii).
Indeed, it has been assumed to apply [27]. In contrast, for
case (iii)—the simplest scenario for initial and final state
effects— D(θ, T ) is never given by the form (1).

We now present some results for the coverage and
temperature dependence of D for these cases. We first
consider case (i), the situation most commonly modelled
in the literature. To calculate the diffusivity for this case,
one calculates 〈W 〉 by evaluating equilibrium correlators,
representing clusters of 2–5 neighbouring sites, such as occur
in the expression (23), and finds the inverse susceptibility from
the chemical potential:

χ−1(θ, T ) = ∂βμ

∂θ

∣∣∣∣
T

. (47)

The correlators in 〈W 〉 span up to three rows along the a axis
of the lattice and, in principle, necessitate a 4-row (reduced)
transfer matrix construction, while the chemical potential only
requires a 2-row (reduced) matrix for its evaluation. One can
bypass the 4-row construction by using the relation, valid for
initial state interactions only:

〈W̃ 〉 = exp(βμ)〈◦◦〉. (48)

(Here 〈◦◦〉 = 1 − 2θ + 〈••〉 spans only two rows.) Bokun
et al [11] give a general proof of this result within the
canonical ensemble, valid for any lattice with translational
and inversion symmetry. However, the relation also follows
within the grand canonical formalism by considering the
equations of motion for θ = 〈•〉 and 〈••〉 for adsorption
and desorption, in particular, upon eliminating the largest (5-
site) correlator between the equations. Figure 1 shows the
effect of repulsive isotropic interactions (square lattice) on
the coverage dependence of the diffusivity and the average

6
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Figure 1. The coverage dependence of the diffusivity (solid lines)
and the average transition rate (dashed lines) for repulsive, first
neighbour isotropic interactions and the hopping kinetics defined by
initial state interactions, with coefficients
An = (eβV1 − 1)n, Bn = 0;βV1 = 5, 2, 1 (top to bottom at
θ = 0.75). Diffusivity normalized by its value for a noninteracting
adsorbate, D0 = J0a2, 〈W 〉 normalized by J0. Dotted lines show D
evaluated in the quasi-chemical approximation.

transition rate for initial state kinetics, calculated with a 2-
row construction for N = 18. For reference we include
the diffusivity for QCA (dotted lines); clearly the accuracy of
QCA decreases around and below the ordering temperature,
kBTc = |V1|/1.763. Comparable results for the square lattice,
but calculated within the cluster variation method, have been
presented by Danani et al [8]. However, there are differences
for both signs of V1 and the transfer matrix method is superior.
For particle repulsion, D(θ) develops structure at and below
the temperature for the onset of c(2 × 2) order, in particular,
local minima or inflections occur for extreme repulsion around
1/2 ML; these deepen with increasing N and arise from the
divergence of the susceptibility at the order–disorder boundary
and not from minima of 〈W 〉. In fact, 〈W 〉 here is almost exact;
it changes little between N = 12-site and 18-site calculations.
Analyses of the divergence of χ for different lattices (square,
hexagonal and honeycomb) can be found elsewhere [9, 28].
Apart from the details associated with the phase transition,
the physics behind the variation of D is not dissimilar to that
occurring in 1D [20] and has been discussed already for the 2D
case here by Danani et al [8]; we need not elaborate.

We next consider case (ii), final state interaction kinetics.
Here again, we can use the two lowest-order equations of
motion for adsorption–desorption to effectively increase the
size of the cylindrical lattice on which the transfer matrix is
constructed. For final state anisotropic interactions one can
write 〈W 〉, equivalently, as

〈W̃ 〉 = 〈◦〉 + B1〈◦•〉 + 2B ′
1〈◦•〉⊥ + 2B2

〈 •
◦ •

〉

+ B ′
2〈• ◦ •〉⊥ + B3

〈 •
• ◦ •

〉⊥
− exp(−βμ)〈◦•〉.

(49)

Figure 2. The coverage dependence of the diffusivity (solid lines)
and the average transition rate (magnified 10×, dashed lines). The
system is as in figure 1, except that the hopping kinetics are
controlled by final state interactions, with coefficients
Bn = (e−βV1 − 1)n, An = 0; βV1 = 1, 2, 5 (top to bottom at
θ = 0.25). Dotted lines for D evaluated in the quasi-chemical
approximation.

Here the correlators span up to three sites along the b direction
and are computed with a 2-row transfer matrix.

In figure 2 we show the coverage dependence of the
diffusivity and the average transition rate (49) for particle
repulsion on a square lattice for N = 18. The increasing
presence of neighbours in the final state results in a decreasing
diffusivity for most of the coverage range. For βV1 large
enough site blocking dominates and diffusion is negligible
above 1/2 ML. The decrease of D towards zero for θ � 1/2 in
this case is opposite to what occurs in 1D; there D diverges
as (1 − θ)−2 before plummeting to zero at 1/2 ML [20].
Although 〈W 〉 is also decreasing as θ → 1/2 in 1D, χ−1

is increasing faster, unlike 2D. Again the onset of c(2 × 2)

order, here of the final state, is manifested just below 1/2
ML as a distinct shoulder in D(θ). In comparison, the QCA
result is clearly inadequate for all but weak repulsion and low
coverage. The only comparable calculation in the literature
is that of Goldstein and Ehrlich [27] for hard-core repulsion,
βV1 → ∞; they evaluated 〈W 〉 by Monte Carlo simulation
and used the series expansion of Gaunt and Fisher [29] for
χ to obtain D but for θ � 1/3 only. In passing we remark
that, for this special case and low coverage (θ � 1/4), one
can also calculate 〈W 〉 quite accurately by factorizing the 4-
site correlator in 2-site overlap [23]. With B(′)

n = (−1)n and
〈•◦〉 = θ for hard-core repulsion, we get for (49)

〈W̃ 〉 = 1 − θ(4 − R3L − 2R3T + R2
3T + exp(−βμ))

R3L = 〈• ◦ •〉θ−1, R3T =
〈 •
◦ •

〉
θ−1.

(50)

χ−1 can be calculated from the activity by first factorizing the
correlators in the expression for the sticking coefficient of an
adsorbate with a hard-core repulsion, S(θ) = θ exp(−βμ).

7
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The result for a square lattice reduces to

S(θ) = 1 − 5θ + θ(2R3L + 4R3T − 4R2
3T + R3

3T ). (51)

Although factorizations of 2D correlators are generally inappli-
cable over the entire ranges of coverage and temperature, the
factorization of the hard-core functions is quite accurate, for
example the result (51) reproduces the Gaunt–Fisher expan-
sion [29] for χ−1 to O(θ4). Returning to the general case, for
attractive interactions, V1 < 0, we comment that the behaviour
of D(θ, T ) is not very different from that in 1D after allowance
is made for the higher lattice coordination [20].

Finally we turn to an example of diffusion with both initial
and final state interactions. In figure 3 we show the diffusivity
calculated from our gradient formula, equation (22), denoted
DG (solid lines), for N = 6, and that of the Reed–Ehrlich form,
equation (1), denoted DRE (dotted lines). The interactions are
anisotropic, V1a �= V1b, with the former, in the direction of
diffusion, attractive and the latter, perpendicular to it, repulsive.
The sharp decrease of the diffusivity at low temperature and
coverage is similar to that which occurs in a 1D system
with nearest neighbour attraction, though in the 2D case the
decrease is enhanced by the large repulsion across the rows.
This results in a 1 × 2 ordered structure at coverage 1/2 so that
the average hopping rate is reduced greatly. Above coverage
1/2 the ordered structure is destroyed and the diffusivity rises
dramatically with a dependence on coverage not dissimilar to
a 1D system with moderate repulsion for this kinetics [20].
We note that DG and DRE are in agreement, essentially, below
coverage 1/2 but disagree above this point, the more so the
lower the temperature.

A few comments on isotropic interactions [22] is in order
for this choice of hopping kinetics, in which a neighbour to
the hopping particle in its initial configuration aids the hop
and a neighbour in the final configuration hinders it. Weak
isotropic repulsion results in DG being nearly symmetric about
1/2 ML; it rises then falls. For stronger repulsion the final
state configuration limits the diffusivity below 1/2 ML, so that
it resembles case (ii). Above 1/2 ML DG decreases smoothly
from a sharp maximum, a behaviour not dissimilar to that in 1D
for this kinetics choice [20]. In contrast, for isotropic attraction
DG is nearly constant in value if the temperature is low enough.
Again DG and DRE disagree so that the factorization for
hopping kinetics not governed by either initial- or final-state
effects, alone, is inadequate.

6. Conclusions

The primary purpose of this work has been to present a
rigorous and a direct gradient expansion of the particle current,
with an imposed density gradient, to obtain an expression for
the diffusivity in terms of correlators for the inhomogeneous
adsorbate. The latter can be evaluated in terms of the transfer
matrix of the homogeneous system; all the advantages of the
transfer matrix method come to bear on the evaluation of the
diffusivity. We have proven that the Reed–Ehrlich factored
form, (1), is only valid for systems where the particle hopping
kinetics is governed by either initial or final state interactions;
this is exclusive of any memory effects.

Figure 3. Normalized diffusivity (solid lines) and the average
transition rate (magnified 3×, dashed lines) on a rectangular lattice
with the hopping kinetics of first neighbour anisotropic interactions
within both initial and final states, with coefficients given by (10).
Interaction in the hopping direction βV1a = −2, −0.8,−0.4 (bottom
to top at coverage 1/4); perpendicular interaction V1b = −2.5 V1a .
Also displayed is the factorization (1) (dotted lines).

We comment on other work employing analytic methods
and some extensions of our approach. Recently Chvoj [26]
has developed a similar method to ours by using the Kramers–
Moyal expansion alluded to in section 1. However, his
evaluation of the diffusivity for a square lattice is limited
to the quasi-chemical approximation. The hopping kinetics
includes both initial and final states, through saddle-point
interactions; in this case it is only the factorization result of
QCA which permits a simplification. The results of works
based on linear response theory, applied to homogeneous
substrates, have started with (1), effectively, but have employed
different methods to calculate χ and 〈W 〉, e.g. transfer matrix
(but N small) [18], cluster methods for correlators [8, 19],
an expansion of the free energy [11, 12] or real-space
renormalization group methods [9, 10] for critical-point
behaviour. All these are limited to initial state kinetics. A
common purpose has been a comparison with Monte Carlo
simulations of D and to estimate the memory effects inherent
to the latter method—apparently negligible for the collective
diffusivity [17]. However, based on our results for 1D [20],
the effects on the variation of D(θ, T ) due to a particular
kinetics choice is a much more important issue and a neglected
one. In the few examples presented, we have barely touched
upon the variability of the diffusivity with the choice of
assumed kinetics and interactions. As in 1D, the interplay of
these choices can produce similar effects for the coverage and
temperature dependence of D, such that a unique interpretation
of data, as due to a particular set of interactions, can be
impossible. Accordingly we have desisted from exploring
the many possible variations of the coverage dependence of
diffusion coefficients. This should be done in the context of
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specific systems where data are available. An advantage of
our formalism is that the effects of any choice of the kinetic
parameters, amongst the large number in 2D, is directly and
easily examined once the appropriate correlators and their
differences have been constructed for some interaction set. The
extensions of our formalism to other lattice geometries, longer-
range interactions, adsorbates with more than one binding site,
etc, are straightforward. Only the number and complexity of
the correlators appearing in (22) changes, a feature common to
all analytic methods.
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